Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress.
نویسندگان
چکیده
A significant amount of reactive oxygen species (ROS) is generated during mitochondrial oxidative phosphorylation. Several studies have suggested that mtDNA may accumulate more oxidative DNA damage relative to nuclear DNA. This study used quantitative PCR to examine the formation and repair of hydrogen peroxide-induced DNA damage in a 16.2-kb mitochondrial fragment and a 17.7-kb fragment flanking the beta-globin gene. Simian virus 40-transformed fibroblasts treated with 200 microM hydrogen peroxide for 15 or 60 min exhibited 3-fold more damage to the mitochondrial genome compared with the nuclear fragment. Following a 60-min treatment, damage to the nuclear fragment was completely repaired within 1.5 hr, whereas no DNA repair in the mitochondrion was observed. Mitochondrial function, as assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction, also showed a sharp decline. These cells displayed arrested-cell growth, large increases in p21 protein levels, and morphological changes consistent with apoptosis. In contrast, when hydrogen peroxide treatments were limited to 15 min, mtDNA damage was repaired with similar kinetics as the nuclear fragment, mitochondrial function was restored, and cells resumed division within 12 hr. These results indicate that mtDNA is a critical cellular target for ROS. A model is presented in which chronic ROS exposure, found in several degenerative diseases associated with aging, leads to decreased mitochondrial function, increased mitochondrial-generated ROS, and persistent mitochondrial DNA damage. Thus persistent mitochondrial DNA damage may serve as a useful biomarker for ROS-associated diseases.
منابع مشابه
P-201: Prevalence of 4977bp Deletion in Mitochondrial DNA in IVF Failure Women
Background: Successful IVF process is limited by factors such as oocyte quality. Oocyte quality can be defined as its abilities to be fertilized, mature and give rise to normal offspring and it is dependent on nuclear maturation and cytoplasm maturation. Damage to mitochondrial DNA (mtDNA) has been described in oocytes in IVF failure women that decrease cytoplasmic quality because Mitochondria ...
متن کاملOxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration.
Oxidative stress is believed to contribute to the pathogenesis of many diseases, including age-related macular degeneration (AMD). Although the vision loss of AMD results from photoreceptor damage in the central retina, the initial pathogenesis involves degeneration of RPE cells. Evidence from a variety of studies suggests that RPE cells are susceptible to oxidative damage. Mitochondrial DNA (m...
متن کاملMitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis.
We have previously shown that the protein subunit of telomerase, hTERT, has a bonafide N-terminal mitochondrial targeting sequence, and that ectopic hTERT expression in human cells correlated with increase in mtDNA damage after hydrogen peroxide treatment. In this study, we show, using a loxP hTERT construct, that this increase in mtDNA damage following hydrogen peroxide exposure is dependent o...
متن کاملP-13: Comparison of Sperm Quality, Oxidative Stress, DNA Fragmentation, Protamine Deficiency, and DNA Methylation in Varicocele and Fertile Individuals
s:1993:"Background: There are many approaches that gene expression is controlled in eukaryotes. DNA methylation is one of several epigenetic mechanisms that cells use to control gene expression and lock genes in the "off" position. In addition, sperm DNA damage can correlate with DNA methylation defect. There is evidence that sperm of infertile men contain more DNA damage than fertile men and t...
متن کاملMitochondrial Telomerase Protects Cancer Cells from Nuclear DNA Damage and Apoptosis
Most cancer cells express high levels of telomerase and proliferate indefinitely. In addition to its telomere maintenance function, telomerase also has a pro-survival function resulting in an increased resistance against DNA damage and decreased apoptosis induction. However, the molecular mechanisms for this protective function remain elusive and it is unclear whether it is connected to telomer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 2 شماره
صفحات -
تاریخ انتشار 1997